
555Bulletin of the American Meteorological Society

1. Introduction and background

Computers have been used in the analysis of data,
both meteorological observations and model output,
for well over a generation. The recent explosive growth
in the use of the Internet for the dissemination of ob-
servational data in both forecasting and research, to-
gether with new requirements for sharing observations
and interpretations, has brought new challenges to tool
developers and users. This challenge has been inten-
sified by the rapid evolution of computer hardware,
software, and network technology. Our group was
originally charged with creating visualization and
analysis interfaces between research scientists and
data. We concentrated on the development of tools that
allowed the display of large two- and three-dimensional
datasets. During the past decade, our target audience
has grown to include educators, students, and the gen-
eral public around the world. Our approach has also
changed from one focused on stand-alone client soft-

ware on high-end Unix workstations to one in which
multiple platforms, running different operating sys-
tems, must communicate over networks. This article
describes our progress, including examples of analy-
sis tasks using our freely available software package,
and what we hope to achieve in the future.

There are two components to our approach. One
involves the transfer of information among comput-
ers and among people, and the other involves tech-
niques for understanding data through visualization.
It is useful to provide a brief history of how our ap-
proach has evolved in both of these areas.

One way of categorizing visualization packages is
to distinguish between those that use programming
languages such as the Interactive Data Language, sold
by Research Systems Inc.,1 and those that use so-called
visual approaches. The former allows the technically
knowledgeable user a great deal of flexibility in the
creation of an analysis or visualization package but
requires the generation or modification of computer
code. The latter creates a user interface that requires
“point and click” input rather than programming and
can be easier to use “out of the box.” Adopting the
second approach, we developed an application called

An Example of a Network-Based
Approach to Data Access,
Visualization, Interactive

Analysis, and Distribution
Lee Elson, Mark Allen, Jeff Goldsmith, Martin Orton, and William Weibel

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

ABSTRACT

A freely available software package, called WebWinds, has been developed that allows atmospheric scientists, edu-
cators, students, and the general public to quickly and easily visualize and analyze data on many of the computer plat-
forms in use today. WebWinds is written in Java and is able to ingest files from local disk or the World Wide Web (WWW).
It is designed to eventually be distributed over the Internet and operate outside of WWW browsers entirely, allowing
fewer restrictions as to where data and applications will be required to be stored. By manipulating data at their source,
Internet bandwidth requirements will be reduced. The design and evolution of WebWinds, including its current display
and analysis capabilities, security considerations, collaborative tools, availability, and planned future developments are
described. Two typical sessions are also described to give the reader an introduction to its use.

Corresponding author address: Dr. Lee Elson, M/S 183-501, Jet
Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109.
E-mail: elson@magus.jpl.nasa.gov
In final form 18 August 1999.
2000 American Meteorological Society 1Online at http://www.rsinc.com.



556 Vol. 81, No. 3, March 2000

LinkWinds (Jacobson et al. 1994), which is distributed
for free. As its name implies, LinkWinds allows the
user to interactively link data, control and display com-
ponents in Windows on the workstation screen, to pro-
duce a unique environment suitable for the task at
hand. LinkWinds is designed to be intuitive to use, in
part because it requires no knowledge of programming
by the user. Many users can learn its capabilities by
trial and error, referring occasionally to its integrated
help system. By writing LinkWinds’ code in the C pro-
gramming language and using X-Windows for the
graphical user interface (GUI), graphical display was
optimized for speed and efficiency. This was crucial
since at the time that LinkWinds was conceived, vi-
sualization requirements pushed the limits of worksta-
tion hardware, especially since we sought to provide
the capability to handle large datasets.

In 1997, it became obvious to us that we needed a
new approach to creating a package for visualization
and analysis. Several factors contributed to this con-
clusion. Desktop computer processor speed and
memory size had been increasing at a rapid rate. This
was accompanied by an increase in the use of special-
ized graphics hardware and a decrease in prices, all of
which contributed to a shift in the number and type of
desktop computers in use in the scientific community.
Many users have discovered that personal computers
(PCs) running either Microsoft Windows or Apple’s
Macintosh Operating System (OS) provide a cost-
effective platform for research-related activities. These
users are generally not skilled at running applications
under Unix operating systems. We rejected the idea
of porting LinkWinds to PCs since we would have had
to have devoted significant resources to the creation
and maintenance of such ports at the expense of de-
veloping new functionality.

A second factor that influenced our conclusion was
the growing popularity of the World Wide Web
(WWW) for distributing data over the Internet. There
are large, rich datasets currently available online, and
projects such as the National Aeronautics and Space
Administration’s (NASA’s) Earth Observing System
promise a dramatic increase in the amount of available
data in the next few years. As we discuss below, large
datasets present both an opportunity and a challenge
when one considers the limited bandwidth of the
Internet and the limited capabilities of some desktop
computers.

There are two additional trends in the analysis of
scientific data made possible by the WWW. First, ef-
forts are being made to make data interpretation un-

derstandable to the nonspecialist, including educators,
students, planners, and the general public. Second, as
the use of powerful desktop computers increases, it
seems clear that an expanded audience will want to
collaborate in their use of visualization tools.

2. New requirements, new approaches

Given these observations, we decided that there is
a need for a freely available visualization and analy-
sis package that inherits the performance and function-
ality of LinkWinds, that functions independently of
computer platform and operating system, that allows
users to collaborate over the Internet and that can be
used as a stand-alone tool on a user’s computer to ana-
lyze local data. We wanted a tool that could be used
as a browser “helper application”2 for downloading
data from the WWW. Later development would allow
tool components to be distributed over the Internet, in-
dependent of the WWW and browsers. We felt that
Java (Campione and Walrath 1998; Java Quick Guide
1999), developed originally by Sun Microsystems,
was most likely to fill these requirements.

Before creating such a package, we initiated a
search for existing software that could meet the above
requirements. Many capable packages are available
but all are either limited to running on specific plat-
forms, not freely available, require the user to use a
programming language, have no collaborative capa-
bility, and/or serve only as client tools that cannot be
distributed over a network. For example, the freely
available client tool, Vis 5-D, is an excellent package,
but cannot run on the Mac. The often used Grid Analy-
sis and Display System package, also a client-only
tool, does not allow collaboration. NCSA’s3 Horizon
development kit, written in Java, is a collection of Java
routines with 2D visualization capability. These rou-
tines must be assembled by the user, although some
ready-made packages exist.

Because our concept for a visualization package
differs from those available, we decided to proceed
with our own development. Before making the deci-
sion to develop a package using Java, several issues

2A helper application is a program on the user’s computer that is
launched by a Web browser in order to provide a capability that
is unavailable in the browser itself.
3National Center for Supercomputing Applications (http://
www.ncsa.uiuc.edu).



557Bulletin of the American Meteorological Society

that are important to developers and users needed to
be addressed.

a. Performance: Network and programming
considerations
There are several factors that affect performance.

The execution time on the client machine is affected
by the type of instructions that are generated by the
program. Java is considered to be a platform-
independent language. It does this by producing a type
of code, called bytecode, that is interpreted in the same
way on all Java-enabled platforms. This universality
comes at a price however since the interpretation pro-
cess is slow compared to the instructions (called ma-
chine code) generated by compilers such as those used
for C or Fortran. Luckily, Java Just-In-Time compil-
ers have been developed that significantly increase
program execution speed. We have found that through
careful programming, we can achieve performance that
is very good for most4 desktop platforms used today.

A more crucial issue is the transfer of information
over the Internet. Originally, the WWW was devel-
oped with a simple operating premise: by construct-
ing a unique address called a URL,5 one could transfer
a file from an Internet location to a user’s browser.
Later developments improved on this capability by
allowing the user’s browser to send the server a lim-
ited amount of information that a program on the
server could use to create and return a unique file to
the browser. Although these programs, called server-
side CGI6 scripts, greatly enhance the usefulness of the
WWW, they still require that the server carry out all
calculations in order to provide the user with a file.

In order to make efficient use of network band-
width and of server resources, it is sometimes neces-
sary to move some of the processing power from the
server to the client. This has been a central concept in
the evolution of Java (as well as other environments
such as Virtual Reality Modeling Language). It has the
ability to transfer an executable program, called an
applet, from a WWW host to a client’s browser.
Although this enables a significant increase in func-
tionality, a frequent observation of this type of WWW
use is that it is slow. There are several reasons for this.
First, before an applet can produce results, it must be

transferred to the client’s machine. Once there, the
browser must load and execute the applet. Various
browsers do this with differing efficiency since they
have different standards for interpreting Java. These
differences can result in execution errors. Applets also
have limits to what they can do. For example, in many
cases, security considerations prevent them from writ-
ing to a client’s disk. Java addresses these (and other)
shortcomings through the use of applications, or pro-
grams that function outside of a WWW browser, much
like any other program on the client machine.
Applications allow performance to be enhanced in
several ways. In addition to the fact that they are not
reliant on an inefficient WWW browser, if an appli-
cation is to be used many times, it can be downloaded
once, saving network bandwidth for other tasks like
the transfer of data. Although there are disadvantages
to using applications (e.g., setup requires user action
outside of a browser), we have found that the advan-
tages are significant, and, as a result, we have used
them exclusively in our tool development activities.

Internet bandwidth also affects data transfer per-
formance. The efficient transfer of data can be brought
about by developing programs that only transmit data
that are needed by the user. For example, many data
archives create individual data files that contain broad
spatial, temporal, or spectral coverages. Providing
means to subset or subsample data at the source can
greatly reduce bandwidth requirements. This is a pri-
mary design goal for our package and will be discussed
further below.

b. Availability and standardization
As discussed above, Java bytecode may be ex-

ecuted on any Java-enabled platform. This is made
possible by an interpreter, called a Java Virtual Ma-
chine (JVM). This kind of interoperability would be
impossible unless developers of operating systems and
applications adopt standards. Although Sun Micro-
systems has kept Java an open (i.e., nonproprietary)
system, not all organizations involved with Java have
agreed on a set of standards. At the present time, how-
ever, many manufacturers7 have implemented JVMs
that adhere to standards well enough to allow us to pro-
duce a working prototype visualization package. Sun
has developed a JVM that runs under Microsoft Win-
dows (95/98/NT) as well as one that runs under its own

4We recommend a processor speed of at least 100 MHz and at least
16 MB of memory.
5Uniform Resource Locator.
6Common Gateway Interface.

7Among these manufacturers are Apple, Silicon Graphics, IBM,
and Hewlett-Packard.



558 Vol. 81, No. 3, March 2000

Unix operating systems. Perhaps most important, these
manufacturers have made their JVMs available for
free. This is crucial for us since there would not be
much point to our creating a freely available package
if users were required to purchase the underlying in-
terpreter. Although future actions with regard to stan-
dards are unpredictable, we are optimistic that there
is a critical mass of cooperating manufacturers com-
mitted to the continued viability of Java.

c. Security and distributed computing
Security and functionality are often inversely re-

lated. In most cases that we have encountered, an
analysis package needs to be able to at least write out
new or modified data (including files containing snap-
shots of windows on the screen) to the local disk.
Unlike applications, Java applets do not currently of-
fer such capabilities. As we shall see, the full poten-
tial of a Java-based package will require the ability to
transfer data and computational instructions from one
platform to another. Security is a primary concern in
the design and evolution of Java. For example, the lan-
guage itself has many safety features that make it dif-
ficult to inadvertently (or maliciously) violate safety
rules. Java verifies that bytecode has not been altered.
Also, read/write/execute access restrictions can be
configured easily in the latest version (1.2) of Java.
Although these features cannot make an application
risk free, they allow us to build a reasonable amount
of security into our visualization package.

As mentioned above, Java was designed for net-
work-based distributed computing. Although it is not
unique in this regard, the standard Java package has
the ability to invoke methods8 from one platform while
they reside on another platform or to bundle up a set
of instructions and move them to another platform for
execution. This very powerful feature will play a sig-
nificant role in our future development efforts.

3. WebWinds: A Java visualization
package

In designing our new Java visualization package,
we felt that an evolutionary approach would work best.
Since the development of LinkWinds gave us exten-
sive experience in both what and what not to design

into such a package, we began by building much of
LinkWinds’s functionality in Java. In order to high-
light both the inheritance from LinkWinds and the new
focus on the WWW, we named this new package
WebWinds9 (WebWinds 1999). To date, over 500 us-
ers have downloaded this package. Their interests span
many disciplines including astronomy, planetary sci-
ence, earth (including atmospheric and oceanic) sci-
ence, and biology, and they represent individuals,
schools, government labs, and the commercial sector.

During the initial development of WebWinds, we
encountered difficulties due to incomplete implemen-
tations of Java on several platforms. This is to be ex-
pected when dealing with a new programming
environment with ambitious goals, as is the case with
Java. For this reason, and because we have extensive
experience in building our own GUIs, much of
WebWinds bypasses prebuilt Java components in fa-
vor of our own custom versions. This allows us greater
control over both the “look and feel” and functional-
ity of our package.

In order to maximize the utility of WebWinds as
quickly as possible, we concentrated on four areas of
development. First, we incorporated as much of the
display and control functionality of LinkWinds as we
could. Second, we built data ingestion tools and capa-
bilities to make it as easy as possible to bring data into
WebWinds. Third, we ensured that collaborative,
Internet-based capabilities were present, and, fourth,
we produced documentation and built packages that
made it as easy as possible to download, install, and
use WebWinds. The discussion that follows describes
the capabilities of our version 1, released in August
of 1999.

a. WebWinds applications suite
Space limitations prohibit a detailed discussion of

WebWinds’s application tools. Instead, the reader is
referred to our online (and downloadable) documen-
tation (Applications 1999). Here we will summarize
these tools and provide examples in the appendix. As
shown in the appendix (Table A1) there are three types
of application tools. Most of the display tools are able
to handle data with up to three dimensions (3D). Two
dimensions are displayed while a third can often be
changed. The displayed image is called a “slice.”
Display filters allow the user to select which two di-

8A procedure, like a subroutine, that performs a certain action. 9Online at http://webwinds.jpl.nasa.gov.



559Bulletin of the American Meteorological Society

mensions are viewed. They also allow the user to se-
lect a portion of a large dataset for viewing. Control
applications act to modify display applications.
Examples of this are provided in the appendix.

As was the case with LinkWinds, the fundamental
design feature of WebWinds is the ability to connect,
or link together, both applications and other elements
(collectively called “objects”) such as those contain-
ing data. Each object occupies a window and windows
can be connected using several different buttons.
Operations that transfer data are connected through the
use of a “drag and drop” button. In some cases, sequen-
tial operations are possible so that these objects can
act first as a “consumer” of information and later as a
“provider” of information that they may have modi-
fied. Control information, such as that provided by
sliders, is exported via a “link” button. Examples of
both types of connections are given in the appendix.

The reason for creating objects in windows and
connecting them together is that the user is given flex-
ibility in creating a session. For example, it is com-
mon to have one slider control two different image
displays. Other types of controls (not listed in
Table A1) are unique to a display, and are therefore
enabled via a menu button on that display. For ex-
ample, selecting “crosshair,” “bounding box,” or
“grid” is only relevant to the display in which it is se-
lected.

b. Data ingestion and output
In order to be useful, the user must be able to bring

data into applications easily. This required us to build
tools to read data files in a variety of formats. For sim-
plicity, we have categorized files into two classes: self-
describing and raw. Self-describing file formats, such
as Network Common Data Format (NetCDF 1999),
Hierarchical Data Format (HDF 1999), and HDF-EOS
(HDFEos 1999) contain metadata10 (e.g., Fig. A4a) as
well as data and usually can be identified by a special
“magic number” at the beginning of the file. Raw data,
on the other hand, either contain no metadata or con-
tain metadata that we do not read. Examples of this
type of format include files containing only binary
(e.g., floating point) numbers or “home grown” files
where the creator has added nonstandard header infor-
mation at the beginning. Another common example of
a raw file format is ASCII, or textual data. All data files

that have been compressed using the public domain
gzip11 compression utility are automatically uncom-
pressed by WebWinds.

WebWinds’s approach to the ingestion of data is
to use a Data Wizard, or GUI-based input application,
to do as much as possible automatically, providing a
default configuration, and then to provide the user with
several methods of adding to or modifying that con-
figuration. Self-describing files often provide enough
information for an initial analysis of a data file with-
out any user input. Raw files require the user to specify
such fundamental parameters as the number and size
of data dimensions.

Successful data ingestion can involve more than
just being able to read certain file formats. Depending
on the capabilities of the user’s machine and the size
of the data file, it may be necessary to restrict the
amount of data brought into computer memory. For
example, an image with several thousand pixels on a
side cannot be viewed on most computer screens with-
out either reducing the resolution of the image or lim-
iting the viewed area. WebWinds allows both of these
options, which we call subsampling and subsetting,
respectively. There are three ways in which this can
occur. First, if the image is too large to even fit into
memory (e.g., high-resolution, multispectral images),
the user can either subset and/or subsample the data
during the loading process. Currently the user does this
by specifying (numerically or with sliders) the range
and/or a skip parameter for each axis that is to be sub-
set or subsampled. Soon, the user will be able to do
visual subsetting: a resizeable rectangular box will be
used to specify an area, in a display window, for
subsetting. Second, if the image data will fit into
memory, but not on the screen, the display tools will
automatically subsample the image so that it fits onto
the screen. Finally, the user can subset or subsample
a data object after it has been read into memory using
the “decimate/subset display” filter.

Data files used by WebWinds may be on the user’s
local disk or, as long as each file has a URL, anywhere
on the WWW. As described below, files accessible
from a WWW browser can also be imported into
WebWinds. This means, for example, that a WWW
site that creates data “on the fly” (e.g., a subsetting
interface or database manager) can be used to provide
input into the package.

10Data about data.

11Gzip is a Gnu compression utility that uses Lempel-Ziv LZ77
compression.



560 Vol. 81, No. 3, March 2000

Saving results is often an important capability for
an analysis package. Currently, a data object can be
saved in several formats, including NetCDF and raw
binary. In section 5, we discuss future enhancements
in this area.

c. Download, installation, and documentation
WebWinds’s software is freely available from our

WWW page (WebWinds 1999), once the user has
filled out a standard noncommercial license agree-
ment. Although the bytecode is identical for each type
of platform, we have created individual packages for
Unix (SGI, Sun, and Linux), Windows (95/98/NT),
and the Mac in order to facilitate installation. Packages
for other platforms (e.g., OS/2) will be created soon.
Each package contains the JVM (about 6 Mb),
WebWinds software (3 Mb), documentation (5 Mb),
and sample data (12 Mb), and totals about 26 Mb in
size. Unpacking and setup are simple and straightfor-
ward for each package if one follows the instructions
in the documentation.

If the user wishes to use WebWinds as a browser
helper application, it is necessary to configure
the browser for this capability, just as it is for most
helper applications. The instructions for doing this
vary with the platform and are included in the docu-
mentation. If both the browser and WWW server12 are
properly configured, clicking on a link will cause the
associated file to be imported into WebWinds.
Otherwise, the user must take the intermediate step of
saving a file to his local disk before importing it into
WebWinds.

WebWinds’s documentation is written in HTML13

and is available both on the WWW site and as part of
the downloadable packages. Each application also has
a “?” button that, when pressed, brings up a Java
browser showing the documentation for that object.
Thus, for example, if a user brings up a histogram ap-
plication and does not know how to use it, pressing
the “?” button will provide a description of that ap-
plication. Included in the documentation package are
several step-by-step examples of how to set up ses-
sions. These sample sessions either use data included
in the package or data available on the WWW. The

descriptions include screen shots of the objects being
described.

d. Automatic scripting: Rerun and remote sessions
By default, each WebWinds session generates a set

of commands, called a script, that reflect the actions
performed by the user. These commands are automati-
cally saved in a file that must be renamed if a perma-
nent version is desired. Any of these script files may
be run during a WebWinds session and, with certain
restrictions, may be run on other machines. Not only
can a user easily recreate a session that was found to
be useful, but such sessions can be given to collabo-
rators for their own use. A data provider can set up a
WWW site containing both data files and script files.
Links to script files on a WWW site allow the user to
import the scripts into WebWinds so that the process
of setting up a session can be made automatic, once
WebWinds has been installed. In addition, our devel-
opment team can use script files to either help users
with problems or investigate bugs in the WebWinds
package.

The scripting language developed for WebWinds
serves another purpose. It enables users to establish
remote, shared sessions with other WebWinds users
on the Internet. To do this, one user requests a shared
session with another party by supplying an Internet
address. If WebWinds is active at this address, a dia-
log box will open there asking for a connection. If the
second user approves, all objects opened on the first
user’s desktop will open on the second user’s desktop
as well. The second user may also request a shared
session with the first user, resulting in a collaboratory
environment. In order for shared sessions to work
properly, identical data files must be available to both
users, either as duplicate files on their respective lo-
cal disks or as a single file accessible to both on the
Internet. Because only scripting commands are ex-
changed, these collaborative sessions can be carried
out over low bandwidth connections.

4. Future work

By June of 2000, we plan to have in place several
new or enhanced capabilities. Since saving results is
important, we plan to add several file formats to our
file save menu. We will accommodate other file for-
mats, for both input and output, as the need arises. We
also plan to add several new display and storage fea-
tures. High on our priority list is a capability to save

12The WWW server must be configured to assign the correct mime
type to a file. For example, an HDF file should have the type ap-
plication/x-hdf. The user has little control over the server’s con-
figuration.
13HyperText Markup Language, the language used by the WWW.



561Bulletin of the American Meteorological Society

image results as JPEG14 or Postscript files suitable for
publication. Also on the drawing board are several 3D
displays (e.g., data on a globe or a transparent 3D im-
age). Since Sun’s 3D Java package, Java 3D, contains
significant limitations and has not become a standard
for 3D applications, we plan to use a standard graph-
ics library, OpenGL. We also plan to enhance our ani-
mation capabilities. In the current version of
WebWinds, it is possible to animate a display by us-
ing a slider. Future versions will include a tool that will
allow the user to record and play back these anima-
tions. As other controls become available (e.g., a 3D
rotator), they will be added to the animation toolkit.
One other capability that we plan to add in the near
term is the use of different map projections.

We also have plans to enhance the architectural
options for WebWinds by the end of 2000. These en-
hancements will allow WebWinds to be used for data
mining15 activities. As we discussed in section 2, com-
ponents of a Java application can be easily distributed
over the Internet. This will allow us, for example, to
move parts of WebWinds to a server or to several serv-
ers that can access datasets through local, high band-
width connections. By doing this, the process of
selecting only the data that is needed can be made
much more efficient. Suppose data are organized at an
archive so that very high spatial resolution global, at-
mospheric observations are stored in large files, each
of which represent data taken during a 24-h period. If
a user is interested in a time series of observations over
a limited geographical region, most data archives to-
day are structured so that it is necessary to obtain large
amounts of data, most of which would be discarded.
By placing subsetting software near the data source,
the user would be able to avoid this inefficient trans-
fer method, and would be able to access the data of
interest much more quickly. We plan to develop server
packages that would carry out these processes in the
near future. We also plan to build interfaces to other
database management systems, making it possible to
carry out more sophisticated data queries and have the
results fed directly into display and control applications.

Further in the future, it should be possible to move
parts of WebWinds from one platform to another.
Suppose there is a mirror site for a particular data
archive. A “roving” version of WebWinds might as-

sess the load level at several sites to determine which
one would perform a function fastest, then move parts
of a session to that site. Similarly, a user might enable
an automatic update feature that would allow software
updates or additions for his client machine to occur au-
tomatically, but only when needed. Finally, we intend
to create “builder applications” that will enable user
extensibility by allowing users to create their own
applications and interfaces.

The amount of computing power connected to the
Internet is enormous. Java offers a method for harness-
ing that power in a way that is invisible to the user,
but highly beneficial to the scientific community.

Acknowledgments. The research described in this paper was
carried out by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and
Space Administration.

Appendix: Sample sessions

In the appendix, we illustrate the capabilities of
WebWinds by showing two examples of how it might
be used. Because of space limitations, we can only
present a very limited introduction to the use of the
applications shown in Table A1. Our WWW site has
several additional examples that give a more complete
description of how to use the applications. Some of the
screen shots shown below may differ from what the
user will see due to changes in the released version of
the software after the time of this writing.

Here, we offer two examples of how data might be
brought into WebWinds and examined. Each example
has a script file associated with it so that the user can
create each session by simply selecting the appropri-
ate script. For the first example, the script is included
with the distribution package and can be selected un-
der the “rerun” option of the “utilities” menu. The
script describing the second example is available at our
WWW site. It is highly recommended that the reader
download and install WebWinds before reading the
section below. Actually creating the sessions that we
describe here will make the written description much
easier to follow.

a. Example 1: Total Ozone Mapping Spectrometer
(TOMS) monthly averages
The first example examines data from the Total

Ozone Mapping Spectrometer instrument. These data
represent monthly averages of total column ozone for
12 months in 1992 and 1993 and are contained in an

14Joint Photographic Experts Group.
15Data mining is the use of pattern recognition software tools to
facilitate the acquisition of certain data from a data library.



562 Vol. 81, No. 3, March 2000

HDF file. There are two approaches that can be used
to import these data. One approach would be to use
the interactive Data Wizard to select the file and

change or add to its metadata as
is done in the second example,
in the next section.

Another approach is to insert
information about the observa-
tions into the WebWinds file,
datamanager.txt. This file char-
acterizes datasets used by the
package and is organized into
data directories, data source de-
scriptions, file, and conversion
types. Directories can be nested
(one inside the other) so that
they can contain other directo-
ries or data source descriptions
in analogy with (but not directly
related to) directories and files on
a computer disk. Data source de-
scriptions specify more than just
the location of a source file on a
disk. In addition to file name,
path, and type, they contain in-
formation about the dependent
and independent variables and
associated color palettes. Table
A2, modified slightly from the
datamanager.txt file distributed
with the package, contains a
data source description listing
that is used in this example. The
first line assigns the name “92–
93” to this source, which will
appear in the desktop menu un-
der “file” → “open.” The second
line specifies the name of the file
to be used. Although not the
case here, this can be a URL if
appropriate. The third line indi-
cates that the file is in HDF for-
mat. The fourth line instructs
WebWinds to combine (concat-
enate) the separate monthly files
into one 3D object. The next line
is not really necessary but is in-
cluded as a reminder that several
simple mathematical conver-
sions can be carried out as data
from a file are loaded into the

data object. The next four lines define the dependent
and independent variables, giving them names, axis
numbers, units, and value ranges. Note that we have

Average Averages slices of datasets and displays the results

Combine Algebraically combines datasets and displays the results

Compare Computes and displays vector statistics for a 3D dataset

Contour Draws contours on several display applications

FFT Displays the results of fast Fourier transforms

Histogram Displays data distributions

Image Displays data as 2D image

Line plot x–y plot of data parallel to an axis

Profile x–y plot of data along a specified line segment

Track pixel Prints numerical values and statistics for a point or area

Value view Displays numerical values for a slice of data

Window tool Displays one dataset on top of another

2D scatterplot Scatters one dataset against another (with statistics)

TABLE A1. WebWinds application suite.

Name Function

Displays

Display filters

Calculator Allows algebraic manipulation of data for “combine”

Color tool Choose/manipulate color palettes

Combine slider Choose offsets for “combine” only

3-Slider Choose offsets for “window tool” only

RGB slider Choose three data slices as inputs to a color display

Slider Pick a slice for any application to use

Decimate/subset Creates a new dataset from a portion of an old one

View axis Changes the viewing axes of a dataset

Controls



563Bulletin of the American Meteorological Society

changed the units in Table A2 to better reflect the as-
sociated variables and that the independent variable,
here called “Ozone,” is always associated with “axis
0.” The last line assigns a pre-
constructed color table, called
“rgb,” to the dataset.

Since the data source descrip-
tion just described is similar to
that included in the WebWinds
distribution, no additions to the
distributed datamanager.txt are
required, although one might
change the units for consistency.
WebWinds, when started, first
produces a desktop window as
shown in Fig. A1a. As described
above, from the “file” menu,
first select “open,” then select
the “Earth” folder, then the
“TOMS MONTHLY” folder,
and scroll down to and select
“92–93.” This brings up a data
object that displays metadata
read from the file and from
datamanager.txt. Pressing the
“load” button causes the data in
the file to be read and produces
the data object represented in
Fig. A1b. Next we wish to dis-

play these data. We do this by first selecting “image”
and then “slider” from the “tools” menu on the desk-
top. With the mouse cursor over the drag and drop but-
ton in the upper-right corner of the data object, press
the mouse button and move the cursor to the image
before releasing the button. Do the same with the
slider. Finally, in order to tell the slider what it will
control, connect the link button (the button with in-
terlocking rings) on the slider to the image. The results
are displayed in Figs. A1c and A1d. The image shows
the distribution of column ozone averaged over a par-
ticular month. The month displayed can be changed
using the slider. Notice that the image and slider both
show, in numerical form, the month being displayed
in the image.

There are several additional things to note about
the image. One is the presence of a crosshair that can
be moved using the mouse. The value of ozone under
the crosshair is displayed just above the image itself.
Another is that if one selects “coast180” from the
“overlays” menu, a white outline of the coastlines of
the world appears in the image. Although the script file
for this example stops with the displays just discussed,
there are several additional features that can be noted.
Pressing the “line plot” button on the image produces

DataSource “92–93”

file “Ozone_Dec22_090631–0.hdf”

format “HDF”

concat

converter “”

meta “latitude” “degrees” axis 2 entries 180 range 90.0–90.0

meta “longitude” “degrees” axis 1 entries 360 range 359.0 0.0

meta “time” “months” axis 3 entries 12 range 1.0 12.0

meta “Ozone” “DU” axis 0 entries 254 range 0.324.

Colorhint “rgb”

TABLE A2. Excerpt from datamanager.txt.

FIG. A1.(a) The desktop is the top-level window. (b) The object display for TOMS ozone.
(c) The TOMS data in an image display, and (d) a slider used to control the time slice.



564 Vol. 81, No. 3, March 2000

an x–y plot for the point under the crosshair, as shown
in Fig. A2a. For this example, this is a plot of column
ozone as a function of time at the latitude and longi-
tude of the crosshair. Notice a significant annual com-
ponent to the variation in the line plot window
(Fig. A2a). As the crosshair is moved, the line plot is
updated. A similar tool, called profile, can be selected
from the tools menu. This tool displays an x–y plot of
data across an arbitrary path in the x–y plane of the
image. First, use the drag and drop button to connect
the data object to this new tool. Next, follow the di-
rections in the profile window and link the image to
the profile. In order to draw a profile on the image,
select “Draw Profile Line”from the “profile line” op-
tion on the image menu button. Then use the mouse
to actually draw the line on the image.

b. Example 2: Climatology Interdisciplinary Data
Collection
The second example uses data from the Goddard

Distributed Active Archive Center (DAAC).16 Our
intent is to demonstrate that any file accessible on the
WWW can be treated as if it were a local file, apart
from the latency inherent in the process of download-
ing the data. We believe that this has relevance to data
producers, providers, and users.

We have chosen to use products from the Clima-
tology Interdisciplinary Data Collection17 because of
the availability of data representing observations of
several atmospheric and surface parameters that have
been mapped to a common grid. It is important to note
that data need not be on a common grid to be com-

pared in WebWinds. This example differs from the
previous one in that the data are not self-describing;
that is, the files contain no metadata. Instead, each file
holds data in floating point format and the user must
read the documentation to know how to interpret the
numbers in the file.

To begin this session, we start WebWinds as in the
previous example, obtaining the desktop window
(Fig. A1a). Next we select “new source” from the
“files” menu, obtaining a window similar to that in
Fig. A3a. Here, we must enter the URL18 for the first
data file we wish to use in the text pad marked “cur-
rent file.” We have selected surface temperature data
derived from the TIROS Operational Vertical Sounder
instrument. With the file selected, press the “open”
button to get an object display window. Because this
file is not recognized, the user must select a file type
from the “file type” menu button. The appropriate
value here is “raw float.” When this selection is made,
several other required fields appear in the window, as
shown in Fig. A3b. Since the data are two-dimensional,
the number 2 must be entered in the “number of di-
mensions” text area and “360 180,” indicating that the
data represent a 360 × 180 (longitude × latitude) ar-
ray, must be entered in the “size of dimensions” area.
Finally, a title should be added to the “title” area. We
have chosen “surface temperature.” With these speci-
fications complete, pressing the “open” button checks
to see whether the user has entered illegal choices. If
not, another press of the “open” button causes the win-
dow to display a summary of the data attributes, in-
cluding default metadata (in the “meta data” window)
describing the dependent and independent variables.
At this point, no data have been read from the file.
Pressing the “load” button does this, providing infor-
mation about the data values in the file, as shown in
Fig. A3c. Notice that the metadata window shows
default names for the variables. In order to change
these names, as well as the units and data ranges, the
user must click on each of the metadata lines in turn.
For example, clicking on the first one, titled “value,”
brings up a separate window. Selecting “edit” from the
menu button in this new window allows the indepen-
dent variable to be given the title “temperature,” as il-
lustrated in Fig. A4a. Notice that the “start value” was
changed from −999 to 200. This was done to elimi-
nate the “no data” values in the file. In order to make

FIG. A2.(a) A line plot showing ozone (DU) vs time (months).
(b) A profile showing ozone vs horizontal position.

16For more information on the DAAC visit http://daac.gsfc.nasa.gov/
DAAC_DOCS/gdaac_home.html online.
17Online at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/
FTP_SITE/inter_disc.html.

18Available online at ftp://daac.gsfc.nasa.gov/data/inter_disc/
tovs_atmo_sound/tsurf/1988/tovsng.tsurf.1pmegg.8801.bin.



565Bulletin of the American Meteorological Society

this effective, the “limit data” control flag must be
checked. To make these metadata changes effective,
“apply” must be selected from the menu. This window
can then be closed. The two de-
pendent variables, longitude
(−180° to 180°) and latitude
(−90° to 90°) (called “row” and
“column” in Fig. A3c) can also be
edited using the same approach.
When all metadata have been
modified, the “load” button on the
object display must be pressed.

With one data object created,
it is time to choose a second for
comparison. We have selected
outgoing longwave radiation
(OLR) data derived from the
Earth Radiation Budget Experi-
ment. Again, starting with the
“new source” option from the

“files” menu, we can create an
OLR data object. The URL19

will be different, of course, as
will the dependent data variable
as specified in the metadata win-
dow. Be sure to press “load” on
this new data object, once all
modifications have been made
to metadata.

With two data objects cre-
ated, we return to the desktop
and select “image” from the
“tools” menu. Use the drag and
drop button in the upper-right
corner of the surface temperature
object display to connect the
temperature to the image. Next,
select “2D scatterplot” from the
same “tools” menu and first drag
the temperature and then the
OLR objects into it. As shown
in Fig. A5a, the resulting display
shows a scatterplot, as well as
some simple statistics for the
two datasets. There appear to be
two distinct correlative regimes
between OLR and surface tem-
perature. Notice that the scatter
diagram is color coded. The col-
ors correspond to different loca-

FIG. A3. The object display used to (a) locate a file, (b) specify file parameters, and (c)
represent a loaded data object.

FIG. A4.(a) An example of a metadata object showing labels, units, and values. (b) A
window tool object containing an image showing surface temperature in the background
and OLR in the small inset window.

19Available online at ftp://daac.gsfc.nasa.gov/data/inter_disc/
radiation_clouds/erbe_rad/1988/erbe.lwolr.lnmegg.8801.bin.



566 Vol. 81, No. 3, March 2000

tions on the earth’s surface. A more precise way to
determine the geophysical location of points in the
scatterplot is to select “resize bounding box” from the
“bounding box” submenu of the “menu” button on the
scatterplot. As shown in Fig. A5a, this allows a box
to be drawn over a portion of the data in the scatter
diagram. If we now use the “link” button (top-right
button) in the scatterplot to connect this display to the
image, we see the data points inside the box are high-
lighted in yellow in the image window (Fig. A5b).

WebWinds has a second tool that is useful for com-
paring two datasets. From the tools menu, select “win-
dow tool.” As with the scatterplot, first drag the surface

temperature object display and
then the OLR object display into
this tool. The result, shown in
Fig. A4b, is a display with tem-
perature in the background and
OLR in a small inset window.
The inset can be resized and
moved over the background
image.

References

Applications, cited 1999: WebWinds
Applications suite. [Available online
at http://webwinds.jpl.nasa.gov/rel1/
webpage/webhelp.html.]

Campione, M., and K. Walrath, 1998:
The Java Tutorial. Addison-Wesley,
964 pp. [Available online at http://
java.sun.com/docs/books/tutorial/
index.html.]

HDFEos, cited 1999: HDF-EOS. [Available online at http://
spsosun.gsfc.nasa.gov/InfoArch_docs.html.]

HDF, cited 1999: Hierarchical Data Format. [Available online at
http://hdf.ncsa.uiuc.edu.]

Jacobson, A. S., A. L. Berkin, and M. N. Orton, 1994: LinkWinds:
Interactive scientific data analysis and visualization. Commun.
ACM, 34, 43–52.

Java Quick Guide, cited 1999: A quick guide to the Java platform.
[Available online at http://java.sun.com/nav/whatis/index.html.]

NetCDF, cited 1999: Network Common Data Format. [Available
online at http://www.unidata.ucar.edu/packages/netcdf/.]

WebWinds, cited 1999: WebWinds documentation and software.
[Available online at http://webwinds.jpl.nasa.gov.]

FIG. A5.(a) A 2D scatterplot showing the relationship between surface temperature and
OLR.The scatter points are color coded, representing different spatial locations. (b) An im-
age showing the surface temperature data. The yellow area shows the location of the data
inside the red bounding box in the 2D scatterplot.


